Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Infect Control Hosp Epidemiol ; 43(7): 834-839, 2022 07.
Article in English | MEDLINE | ID: covidwho-2185189

ABSTRACT

OBJECTIVES: An accurate estimate of the average number of hand hygiene opportunities per patient hour (HHO rate) is required to implement group electronic hand hygiene monitoring systems (GEHHMSs). We sought to identify predictors of HHOs to validate and implement a GEHHMS across a network of critical care units. DESIGN: Multicenter, observational study (10 hospitals) followed by quality improvement intervention involving 24 critical care units across 12 hospitals in Ontario, Canada. METHODS: Critical care patient beds were randomized to receive 1 hour of continuous direct observation to determine the HHO rate. A Poisson regression model determined unit-level predictors of HHOs. Estimates of average HHO rates across different types of critical care units were derived and used to implement and evaluate use of GEHHMS. RESULTS: During 2,812 hours of observation, we identified 25,417 HHOs. There was significant variability in HHO rate across critical care units. Time of day, day of the week, unit acuity, patient acuity, patient population and use of transmission-based precautions were significantly associated with HHO rate. Using unit-specific estimates of average HHO rate, aggregate HH adherence was 30.0% (1,084,329 of 3,614,908) at baseline with GEHHMS and improved to 38.5% (740,660 of 1,921,656) within 2 months of continuous feedback to units (P < .0001). CONCLUSIONS: Unit-specific estimates based on known predictors of HHO rate enabled broad implementation of GEHHMS. Further longitudinal quality improvement efforts using this system are required to assess the impact of GEHHMS on both HH adherence and clinical outcomes within critically ill patient populations.


Subject(s)
Cross Infection , Hand Hygiene , Critical Care , Cross Infection/prevention & control , Electronics , Guideline Adherence , Humans , Infection Control , Ontario
2.
Br J Anaesth ; 129(5): 679-692, 2022 11.
Article in English | MEDLINE | ID: covidwho-1966391

ABSTRACT

BACKGROUND: We performed a systematic review of mechanically ventilated patients with COVID-19, which analysed the effect of tracheostomy timing and technique (surgical vs percutaneous) on mortality. Secondary outcomes included intensive care unit (ICU) and hospital length of stay (LOS), decannulation from tracheostomy, duration of mechanical ventilation, and complications. METHODS: Four databases were screened between January 1, 2020 and January 10, 2022 (PubMed, Embase, Scopus, and Cochrane). Papers were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and the Population or Problem, Intervention or exposure, Comparison, and Outcome (PICO) guidelines. Meta-analysis and meta-regression for main outcomes were performed. RESULTS: The search yielded 9024 potentially relevant studies, of which 47 (n=5268 patients) were included. High levels of between-study heterogeneity were observed across study outcomes. The pooled mean tracheostomy timing was 16.5 days (95% confidence interval [CI]: 14.7-18.4; I2=99.6%). Pooled mortality was 22.1% (95% CI: 18.7-25.5; I2=89.0%). Meta-regression did not show significant associations between mortality and tracheostomy timing, mechanical ventilation duration, time to decannulation, and tracheostomy technique. Pooled mean estimates for ICU and hospital LOS were 29.6 (95% CI: 24.0-35.2; I2=98.6%) and 38.8 (95% CI: 32.1-45.6; I2=95.7%) days, both associated with mechanical ventilation duration (coefficient 0.8 [95% CI: 0.2-1.4], P=0.02 and 0.9 [95% CI: 0.4-1.4], P=0.01, respectively) but not tracheostomy timing. Data were insufficient to assess tracheostomy technique on LOS. Duration of mechanical ventilation was 23.4 days (95% CI: 19.2-27.7; I2=99.3%), not associated with tracheostomy timing. Data were insufficient to assess the effect of tracheostomy technique on mechanical ventilation duration. Time to decannulation was 23.8 days (95% CI: 19.7-27.8; I2=98.7%), not influenced by tracheostomy timing or technique. The most common complications were stoma infection, ulcers or necrosis, and bleeding. CONCLUSIONS: In patients with COVID-19 requiring tracheostomy, the timing and technique of tracheostomy did not clearly impact on patient outcomes. SYSTEMATIC REVIEW PROTOCOL: PROSPERO CRD42021272220.


Subject(s)
COVID-19 , Critical Illness , Humans , Critical Illness/therapy , Time Factors , Tracheostomy/methods , Respiration, Artificial/methods , Length of Stay
3.
Front Oncol ; 11: 629207, 2021.
Article in English | MEDLINE | ID: covidwho-1156136

ABSTRACT

BACKGROUND: Experimental data highlight the potential benefits and health system cost savings related to surgical prehabilitation; however, adequately powered randomized controlled trial (RCT) data remain nascent. Emerging prehabilitation services may be informed by early RCT data but can be limited in informing real-world program development. Pragmatic trials emphasize external validity and generalizability to understand and advise intervention development and implementation in clinical settings. This paper presents the methodology of a pragmatic prehabilitation trial to complement emerging phase III clinical trials and inform implementation strategies. METHODS: This is a pilot pragmatic clinical trial conducted in a large academic hospital in Toronto, Ontario, Canada to assess feasibility of clinical implementation and derive estimates of effectiveness. Feasibility data include program referral rates, enrolment and attrition, intervention adherence and safety, participant satisfaction, and barriers and facilitators to programming. The study aims to receive 150 eligible referrals for adult, English-speaking, preoperative oncology patients with an identified indication for prehabilitation (e.g., frailty, deconditioning, malnutrition, psychological distress). Study participants undergo a baseline assessment and shared-decision making regarding the intervention setting: either facility-based prehabilitation or home-based prehabilitation. In both scenarios, participants receive an individualized exercise prescription, stress-reduction psychological support, nutrition counseling, and protein supplementation, and if appropriate, smoking cessation program referrals. Secondary objectives include estimating intervention effects at the week prior to surgery and 30 and 90 days postoperatively. Outcomes include surgical complications, postoperative length of stay, mortality, hospital readmissions, physical fitness, psychological well-being, and quality of life. Data from participants who decline the intervention but consent for research-related access to health records will serve as comparators. The COVID-19 pandemic required the introduction of a 'virtual program' using only telephone or internet-based communication for screening, assessments, or intervention was introduced. CONCLUSION: This pragmatic trial will provide evidence on the feasibility and viability of prehabilitation services delivered under usual clinical conditions. Study amendments due to the COVID-19 pandemic are presented as strategies to maintain prehabilitation research and services to potentially mitigate the consequences of extended surgery wait times.

4.
JAMA Netw Open ; 3(12): e2029250, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-973282

ABSTRACT

Importance: In the current setting of the coronavirus disease 2019 pandemic, there is concern for the possible need for triage criteria for ventilator allocation; to our knowledge, the implications of using specific criteria have never been assessed. Objective: To determine which and how many admissions to intensive care units are identified as having the lowest priority for ventilator allocation using 2 distinct sets of proposed triage criteria. Design, Setting, and Participants: This retrospective cohort study conducted in spring 2020 used data collected from US hospitals and reported in the Philips eICU Collaborative Research Database. Adult admissions (N = 40 439) to 291 intensive care units from 2014 to 2015 who received mechanical ventilation and were not elective surgery patients were included. Exposures: New York State triage criteria and original triage criteria proposed by White and Lo. Main Outcomes and Measures: Sequential Organ Failure Assessment (SOFA) scores were calculated for admissions. The proportion of patients who met initial criteria for the lowest level of priority for mechanical ventilation using each set of criteria and their characteristics and outcomes were assessed. Agreement was compared between the 2 sets of triage criteria, recognizing differences in stated criteria aims. Results: Among 40 439 intensive care unit admissions of patients who received mechanical ventilation, the mean (SD) age was 62.6 (16.6) years, 54.9% were male, and the mean (SD) SOFA score was 4.5 (3.7). Using the New York State triage criteria, 8.9% (95% CI, 8.7%-9.2%) were in the lowest priority category; these lowest priority admissions had a mean (SD) age of 62.9 (16.6) years, used a median (interquartile range) of 57.3 (20.1-133.5) ventilator hours each, and had a hospital survival rate of 38.6% (95% CI, 37.0%-40.2%). Using the White and Lo triage criteria, 4.3% (95% CI, 4.1%-4.5%) were in the lowest priority category; these admissions had a mean (SD) age of 68.6 (13.2) years, used a median (interquartile range) of 61.7 (24.3-142.8) ventilator hours each, and had a hospital survival rate of 56.2% (95% CI, 53.8%-58.7%). Only 655 admissions (1.6%) were in the lowest priority category for both guidelines, with the κ statistic for agreement equal to 0.20 (95% CI, 0.18-0.21). Conclusions and Relevance: Use of 2 initially proposed ventilator triage guidelines identified approximately 1 in every 10 to 25 admissions as having the lowest priority for ventilator allocation, with little agreement. Clinical assessment of different potential criteria for triage decisions in critically ill populations is important to ensure valid and equitable allocation of resources.


Subject(s)
COVID-19 , Health Care Rationing/methods , Triage/methods , Ventilators, Mechanical , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/therapy , Critical Illness , Female , Health Care Rationing/standards , Humans , Intensive Care Units , Male , Middle Aged , New York , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2 , Triage/standards
SELECTION OF CITATIONS
SEARCH DETAIL